F 3052

(Pages : 2)

Reg.	No	
Nam	e	

B.TECH. DEGREE EXAMINATION, DECEMBER 2012

Fifth Semester

Branch : Mechanical Engineering/Automobile Engineering

AU 010 502 ME 010 502 COMPUTER AIDED DESIGN AND MANUFACTURING (AU, ME)

(Regular-New Scheme)

Time : Three Hours

1

Maximum : 100 Marks

Answer all questions.

Part A

Each question carries 3 marks.

- 1. Define computer integrated manufacturing.
- 2. Differentiate between Incremental and Absolute systems.
- 3. List any five geometric commands in APT.
- 4. What are the advantages of CAPP ?
- 5. What is the function of a robot end effector?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Each question carries 5 marks.

- 6. Discuss the various storage devices used in CAD.
- 7. Explain the practical application of straight-cut NC system.
- 8. Discuss the main aspects of word address format in NC.
- 9. What are the elements of responsive manufacturing ? Explain.
- 10. What are the challenges in application of a robot for welding ?

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer either (a) or (b) section from each module. Each full question carries 12 marks. Module I

11. (a) Discuss a scheme for networking an integrated CAD/CAM system used in a foundry shop and machine shop.

Or

(b) Describe all the 2D transformation operations used in CAD.

Turn over

Module II

2

12. (a) Discuss all the steps in an engineering design process. What is the effect of using computers in design ?

Or

(b) With neat sketches, explain all the feedback devices used in CNC.

Module III

13. (a) Write a manual part program in (i) fixed format ; (ii) Tab sequential format ; and (iii) Word address format to machine the internal surfaces of a tapered threaded hole of a component. Assume suitable dimensions and use incremental positioning.

Or

(b) Write an APT part program to perform milling operation of pockets. Assume suitable dimensions of the part and list all the statements.

Module IV

14. (a) Define group technology. Discuss any one method of group technology and apply it to a production system.

Or

- (b) Explain the following :---
 - (i) Types of FMS.
 - (ii) FMC.
 - (iii) JIT.

$(3 \times 4 = 12 \text{ marks})$

Module V

15. (a) With neat sketches, explain the kinematics and dynamics of a robotic system. What are the challenges involved in design of a SCARA robot ? Explain.

Or

(b) Explain robotic control, drives, actuators and sensors of a robotic system when applied to a manufacturing industry.

 $[5 \times 12 = 60 \text{ marks}]$